
General Features
This section covers the following topics:

Overview
Split-Screen
Multiple Sessions
Software AG Editor
Versioning
Flexible Lists
Command Scripts
User Workpool
Recovery

Overview
Much of the power of Natural ISPF lies in the wealth of special features it offers to make your work in application
development as comfortable as possible. Natural ISPF features are too numerous to elaborate here, and such facilities
as user profiling, individual user defaults, abbreviations for long data set names, flexible PF-key assignments,
activity tracing and easy administration should these days be taken for granted. However, a few other, particularly
interesting features are presented below just to whet your appetite:

1Copyright Software AG 2002

General FeaturesGeneral Features

Split-Screen
Working with Natural ISPF in split-screen mode means dividing your terminal screen horizontally into two sections
using the SPLIT command and running a Natural ISPF session in each section. You can change the portion of the
terminal screen devoted to each session by moving the cursor to where you wish to split the screen and repeating the
SPLIT command.

The split-screen feature is useful for easy control of parallel sessions. For example, you could run a Natural program
from an edit session in one part of the screen and immediately see the resulting output in a session with the User
Workpool in another part of the screen.

If both sessions are edit sessions, cross-session actions are possible. For example, you can move or copy data from
one session to the other. A common way to work with Natural ISPF is to run multiple sessions from your terminal
with two sessions in split-screen mode. For an example of working in split-screen mode, see the description of
Natural members and Views in the Section Natural ISPF Objects, as well as in the subsection on Multiple Sessions
below.

Multiple Sessions
Working in multi-session mode means starting several parallel Natural ISPF sessions. You can control up to 20
active Natural ISPF sessions from your terminal. Sessions can be suspended (put to the back of the other sessions) or
resumed (brought to the front) as required.

Typical examples of multi-session operations are copying data from one edit session to another, or editing and
running a Natural program in one session and checking the resulting output in another.

The following figure illustrates a terminal screen with Natural ISPF in multi-session mode:

---------------------------NATURAL-ISPF-MAIN-MENU------------------------------
>-------------------------NATURAL-VIEW--ENTRY-PANEL----------------------------
>>EDIT-PDS:MBE.SYSF.SOURCE(NOJC02)----------------------------- columns 001 072
 COMMAND===> SCROLL===> CSR
****** ****************************** top of data *****************************
000001 //SNNO2J02 JOB SN,CLASS=G,MSGCLASS=X,MSGLEVEL=(1,1)
000002 //*
000003 //* DEMONSTRATION JOB
000004 //*
000005 //IEFBR14 EXEC PGM=IEFBR14
000006 //SYSPRINT DD SYSOUT=*
000007 //*
000008 //STEP01 EXEC PGM=SNABND,PARM=’C0004’
000009 //STEPLIB DD DSN=NATOP.V110.LOAD,DISP=SHR
000010 //
LIST-NAT:NSPF101------------------------------- Row 11 of 323 - columns 010 071
 COMMAND===> SCROLL===> CSR
 MEMBER PGMTYPE SM S/C VERS LEVL USERID DATE TIME VV.MM
 ISPBR Subprogram S S 2.1 0003 L99014 88:07:11 09:51 03.00
 ISPBRR1 Program S S 2.1 0003 L99014 89:03:06 17:11 03.00
 ISPBRWSM Map S S/C 2.1 0004 L99014 89:03:28 16:30
 ISPBRW5M Map S S/C 2.1 0004 L99014 89:03:28 16:30 03.02
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Split End Suspe Rfind Rchan Up Down Swap Left Right Curso

The screen shows two suspended sessions, one containing the Natural ISPF main menu, the other a session with the
Views facility; two session are displayed in split-screen mode, the top session contains an editing session with a PDS
member, the bottom session contains a list of Natural objects.

Copyright Software AG 20022

General FeaturesSplit-Screen

Switching between sessions is easy: just place the cursor on the required session and issue the POP command to
bring the marked session to the front. This process is made even easier by assigning the POP command to a PF-key.
A session is then selected by positioning the cursor on it and pressing the PF-key.

Software AG Editor
Natural ISPF includes the Software AG Editor, which is the same as the editor used, for example, by Natural for
UNIX. The Editor looks familar to programmers used to time-sharing environments (for example, TSO/ISPF on
MVS), and use of the Editor requires little or no extra training.

The Editor is used to list, browse and edit all objects accessible via Natural ISPF, meaning that you have one uniform
editor to display and handle the whole range of objects at your site, irrespective of any underlying operating systems.

Additionally, the Editor is especially adapted to the Natural ISPF environment and your special needs in application
development. This means that the Editor provides object-specific commands such as CHECK, RUN, CAT, STOW
for Natural objects and SUBMIT for job control members.

Together with Natural ISPF features such as multiple sessions, split-screen, and cross-session operations such as data
transfer across operating systems, the Editor is a powerful tool in the hands of application developers and system
programmers alike.

The following example simply shows an edit session with a macro-type Natural program:

EDIT-NAT:NSPFEXAM(MAC-MVS3)-Macro->Struct-Free-42K ------------ Columns 001 072
 COMMAND===> SCROLL===> CSR
 ****** ****************************** top of data *****************************
 000010 § DEFINE DATA LOCAL
 000020 § 1 #JOB (A08)
 000030 § 1 #USER (A08)
 000040 § 1 #IN-DSNAME (A44)
 000050 § 1 #IN-VOLSER (A6)
 000060 § 1 #MEMBER (A8)
 000070 § 1 #OUT-DSNAME (A44)
 000080 § 1 #OUT-VOLSER (A6)
 000090 § 1 #DD-VOL (A20)
 000100 § *
 000110 § 1 PDS-DIRECTORY-VIEW VIEW OF PDS-DIRECTORY
 000120 § 2 NODE
 000130 § 2 DSNAME
 000140 § 2 VOLSER
 000150 § 2 MEMBER
 000160 § END-DEFINE
 000170 § INPUT ’COPY MEMBERS ==>’ #MEMBER
 000180 § / ’FROM DSNAME ==>’ #IN-DSNAME ’VOLSER==>’ #IN-VOLSER
 000190 § / ’TO DSNAME ==>’ #OUT-DSNAME ’VOLSER==>’ #OUT-VOLSER
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Split End Suspe Rfind Rchan Up Down Swap Left Right :s

Versioning
Natural ISPF can keep previous versions of objects after they have been edited and saved (or, in the case of Natural
programs, stowed). For LMS elements (BS2000 sites) and members kept in CA-LIBRARIAN, product-specific
versioning features are supported.

3Copyright Software AG 2002

Software AG EditorGeneral Features

Previous versions of Natural objects, PDS members and VSE members are treated as separate objects in Natural
ISPF and can be listed, browsed and deleted as any other member. You can retrieve a previous version for further
editing by storing it in the object library under a different name. Additionally, specific versions can be held
permanently, meaning they are not automatically deleted when the maximum number of versions is reached. A
special command is available that allows you to see the difference between any selected previous version and the
current version of a member.

The advantages of the Natural ISPF versioning feature to application developers are obvious: the history of
applications can be tracked, earlier versions can be reverted to and using other Natural ISPF features such as
split-screen and cross-session operations, data can easily be transferred between versions.

The following example shows the effect of the DIFFERENCE command issued for a previous version: a message in
the prefix area marks those lines that have changed from the selected previous version to the current version. In our
example, the message "OLD" marks those lines that have been modified (lines 490 and 530), and the message
"NEW" marks the line that has been added (line 540):

DIFFERENCE-NV:JWO(EXAM)-Ver<-1>-93/12/20-11:04:19 ------------- Columns 011 076
 COMMAND===> SCROLL===> CSR
 000460 *
 000470 DECIDE ON EVERY VALUE OF #FUNCTION
 000480 VALUE ’REPORT’, ’BOTH’
 000490 DISPLAY (1) HORSEPOWER MAKE MODEL COLOR
 Old>0490 DISPLAY (1) HORSEPOWER MAKE MODEL COLOR NUMBER-OF-CYLINDERS
 000500 VALUE ’TUNING’, ’BOTH’
 000510 IF #NEW NE HORSEPOWER
 000520 MOVE #NEW TO HORSEPOWER
 000530 DISPLAY (2) HORSEPOWER MAKE MODEL COLOR #NEW
 Old>0530 DISPLAY (2) HORSEPOWER MAKE MODEL COLOR NUMBER-OF-CYLINDER
 New>0540 WRITE (2) ’Car is updated’
 000550 UPDATE
 000560 ADD 1 TO #UPD-CNT
 000570 PERFORM ET-LOGIK
 000580 END-IF
 000590 VALUE ’STOP’ , ’END’
 000600 STOP
 000610 NONE
 000620 REINPUT WITH TEXT ’INVALID FUNCTION SELECTED’
 000630 END-DECIDE
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Split End Suspe Rfind Rchan Up Down Swap Left Right :s

Flexible Lists
Before an object can be edited or browsed, you must first locate it. No problem?

How often has it happened that you cannot quite remember the name of the program you need, or that you have
forgotten in which library you have stored a certain job? Alternatively, if you have to change the name of, say, a
certain parameter and you must change all references to this parameter, would it not be useful to list only those
members in the object library that contain the parameter name?

The Software AG Editor integrated in Natural ISPF provides some powerful listing capabilities:

Libraries, or members in a known library can be listed according to a name pattern using wildcard symbols. For
example, specifying "NSPF*" for data set name in a LIST command lists all data sets with the prefix NSPF.
Other search criteria can be a certain character or string in a certain place of the name, or an object-specific
characteristic, such as member type. This allows you to locate objects with a minimum of knowledge of names.
Using a special scan option, objects can be listed according to a character string they contain. The resulting list

Copyright Software AG 20024

General FeaturesFlexible Lists

indicates the number of occurrences of the string and displays the first occurrence.

The following example shows a list generated using the scan option: all objects in Natural library NSPFEXAM
starting with the string IDB and containing the string READ are listed:

LIST-NAT:NSPFEXAM(IDB*)/SC=READ ----------------- Row 0 of 23 - Columns 010 076
 COMMAND===> SCROLL===> CSR
 MEMBER PGMTYPE SM S/C NUM FIRST FOUND
** ******************************** top of list *******************************
 IDB-DEMO Program S S/C 2 READ INCORE-SEMINAR IDENTIFIER = ’
 IDB-HITN Subprogram S S/C 3 * SUBPROGRAM TO READ/WRITE A FILE
 IDB-HITP Program S S/C 5 CALLNAT ’IDB-HITN’ ’R’
 IDB-HIT1 Program S S/C 1 CALLNAT ’IDB-HITN’ ’R’
 IDB-HIT4 Program S S/C 6 READ INCORE-MUSIC IDENTIFIER
 IDB-KEYS Program S S/C 2 READ(100) EMPLOYEES
 IDB-MOVI Program S S 2 READ MOVIES IDENTIFIER = ’MYMOVIE’
 IDB-STO1 Program S S 2 READ IDB-PERSON IDENTIFIER = ’TAB
 IDB-TABP Program S S/C 2 READ INCORE-SEMINAR IDENTIFIER = ’
 IDB-TEXP Program S S 2 READ TEXT IDENTIFIER = ’MYTEXT’
 IDB-TEXT Program S S/C 2 READ TEXT IDENTIFIER = ’MYTEXT’
 IDB-001P Program S S/C 4 READ EMPLOYEES
 IDB-002P Program S S/C 4 READ TEXT IDENTIFIER = ’SAMP1’
 IDB-003P Program S S/C 2 READ(100) EMPLOYEES
 IDB-004P Program S S/C 5 1 #REPORT-ALREADY-EXISTS(L)
 IDB-006P Program S S/C 5 PERFORM READ-DIRECTORY
 IDB-007P Program S S/C 11 1 READ-FILE VIEW OF READ-FILE
 IDB-008P Program S S/C 6 1 #PERSONNEL-CV-ALREADY-EXIST(L)
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Split End Suspe Rfind Rchan Up Down Swap Left Right :s

Once a list has been generated, all Editor commands are available that help you find the item you need (LOCATE a
line, FIND a string, UP, DOWN, TOP, BOTTOM, EXCLUDE lines from display, etc.). Additionally, some
commands are available that allow you to customize the list according to your needs:

With the SORT command, you can change the order of objects according to the data in any displayed column.
For example, in reverse chronological order according to the DATE column or in alphabetical order according
to the USER column.
The LAYOUT command facilitates an even more powerful rearrangement of listed information. It allows you to
select the columns to be displayed, suppress other columns, decide in which order the columns are to be
displayed, and define the order of information within the columns. Once the list is customized as you require,
you can store the layout, and future lists of this object type will take the defined layout.

Command Scripts
You can write and store a series of Natural ISPF commands in a member of any type (Natural, PDS, LMS element,
VSE member, etc.). Such a member is known as a command script. The script can be executed with the PLAY
function command. The commands are then executed sequentially.

For example, playing a member with the following content from a Natural edit session:

CHANGE ’READ’ ’FIND’ ALL
CHANGE ’FIND-FILE’ ’READ-FILE’ ALL
STOW
END

5Copyright Software AG 2002

Command ScriptsGeneral Features

changes all occurrences of READ into FIND, then changes all occurrences of FIND-FILE back to READ-FILE
before stowing the program and ending the session.

The example makes clear that the command script feature has many advantages and uses.

Frequently-used or repetitive command sequences can be kept as a script and executed with minimal editing
effort.
Procedures can be automated by storing them in a script. For example, a script can be specified in your user
profile and executed everytime you log on to Natural ISPF. Your session is thus tailored to your requirements
before the first Natural ISPF screen is even displayed.
Command scripts can be nested (that is, a PLAY command within a command script), allowing maximum
flexibility of automated command sequences.
Command scripts can be generated automatically using the macro facility. This allows for dynamic scripts with
variable command parameters that are prompted at execution time.

An executing command script can be interrupted using the PAUSE command coded in the script. This allows editing
before the script continues. A script which is executed by the PLAY command is stored in the User Workpool. When
a script is interrupted by a PAUSE command or an error, the lines not yet executed are also written to the User
Workpool and can be modified.

User Workpool
The User Workpool is an internal pool used as destination for output from a number of different sources. Output can
be listed and further maintained in the workpool facility, which is a standard option on the Natural ISPF main menu.

The following objects covered by this document are written to the User Workpool;

The output of objects that use the macro facility after macro expansion
The output of any Natural program or Natural utility outside of Natural ISPF that defines the workpool as a
printer
A command script executed by the PLAY command; also, if a command script is interrupted by the PAUSE
command or an error, the command lines not yet executed are written to the workpool and can be modified

Output written to the User Workpool can be handled like any other Natural ISPF object, and can be stored
permanently by copying to another object type in Natural ISPF.

A typical way of working with Natural ISPF is to have an edit session with a Natural program, with the output of the
program in the workpool in another session so that you can see the effect of your editing immediately. An example
of this mode of work is illustrated in the subsection on Natural members in section 1 of this document.

Recovery
Natural ISPF provides a comfortable recovery facility for lost files after an abnormal termination or system crash.

A backup of the file you are editing is written after a certain number of lines have been modified (this number is
specified in your personal user profile).

If you then lose files for any reason, Natural ISPF will notify you with a message at your next logon, asking you to
list the recovery files. If you issue the RECOVERY command, you are presented with a list of recovery files. You
can select any recovery file from the list for EDIT or DELETE.

If more than one file is to be recovered, you can re-edit one file. After saving it, pressing PF3 returns you to the list
of recovered files and you can re-edit the next one.

Copyright Software AG 20026

General FeaturesUser Workpool

	General Features
	Overview
	Split-Screen
	Multiple Sessions
	Software AG Editor
	Versioning
	Flexible Lists
	Command Scripts
	User Workpool
	Recovery

